
cx_Freeze Documentation
Release 6.4

Anthony Tuininga

Nov 21, 2020

Contents

1 Using cx_Freeze 3

2 Installation 5
2.1 Source code . 5

3 distutils setup script 7
3.1 distutils commands . 8
3.2 cx_Freeze.Executable . 12

4 cxfreeze script 13

5 Frequently Asked Questions 15
5.1 Problems with running frozen programs . 15
5.2 Freezing for other platforms . 15
5.3 Using data files . 16
5.4 Microsoft Visual C++ Redistributable Package . 16
5.5 Single-file executables . 16

6 Release notes 17
6.1 6.x releases . 17
6.2 5.x releases . 22
6.3 Older versions . 31

7 Development 35
7.1 Getting started . 35
7.2 Setup . 35
7.3 Contributing . 36

8 Licensing 37
8.1 License for cx_Freeze . 37

9 Indices and tables 39

Index 41

i

ii

cx_Freeze Documentation, Release 6.4

cx_Freeze creates standalone executables from Python scripts, with the same performance, is cross-platform and
should work on any platform that Python itself works on.

cx_Freeze version Python version supported
cx_Freeze 6.4 Python 3.6 to 3.9
cx_Freeze 6.3 Python 3.5.2 to 3.8
cx_Freeze 6.1 Python 3.5.0 to 3.8
cx_Freeze 5.1.x Python 2.7

cx_Freeze is distributed under an open-source license (the PSF license).

Contents:

Contents 1

https://www.python.org/

cx_Freeze Documentation, Release 6.4

2 Contents

CHAPTER 1

Using cx_Freeze

There are three different ways to use cx_Freeze:

1. Use the included cxfreeze script.

2. Create a distutils setup script. This is useful if you need extra options when freezing your program, because you
can save them in the script. Run cxfreeze-quickstart to generate a simple setup script.

3. Work directly with the classes and modules used internally by cx_Freeze. This should be reserved for compli-
cated scripts or extending or embedding.

cx_Freeze normally produces a folder containing an executable file for your program, along with the shared li-
braries (DLLs or .so files) needed to run it. You can make a simple Windows installer using a setup script with
the bdist_msi option, or a Mac disk image with bdist_dmg. For a more advanced Windows installer, use a
separate tool like Inno Setup to package the files cx_Freeze collects.

Python modules for your executables are stored in a zip file. Packages are stored in the file system by default but can
also be included in the zip file.

3

https://www.jrsoftware.org/isinfo.php

cx_Freeze Documentation, Release 6.4

4 Chapter 1. Using cx_Freeze

CHAPTER 2

Installation

In a virtual environment, install by issuing the command:

pip install cx_Freeze --upgrade

Without virtual environment, depending on the system:

python -m pip install cx_Freeze --upgrade

or

python3 -m pip install cx_Freeze --upgrade

or download directly from PyPI.

2.1 Source code

You can download and extract the source code found on Github to do a a manual installation.

Installing from source requires setuptools. This is installed automatically in virtual environments.

The following steps are needed:

python setup.py build
python setup.py install

or

python setup.py develop

Issue tracking on Github.

5

https://pypi.org/project/cx_Freeze
https://github.com/marcelotduarte/cx_Freeze
https://github.com/marcelotduarte/cx_Freeze/issues

cx_Freeze Documentation, Release 6.4

6 Chapter 2. Installation

CHAPTER 3

distutils setup script

In order to make use of distutils a setup script must be created. This is called setup.py by convention, although it
can have any name. It looks something like this:

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected, but it might need fine tuning.
build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}

GUI applications require a different base on Windows (the default is for a
console application).
base = None
if sys.platform == "win32":

base = "Win32GUI"

setup(name = "guifoo",
version = "0.1",
description = "My GUI application!",
options = {"build_exe": build_exe_options},
executables = [Executable("guifoo.py", base=base)])

There are more examples in the samples/ directory of the source.

The script is invoked as follows:

python setup.py build

This command will create a subdirectory called build with a further subdirectory starting with the letters exe. and
ending with the typical identifier for the platform that distutils uses. This allows for multiple platforms to be built
without conflicts.

On Windows, you can build a simple installer containing all the files cx_Freeze includes for your application, by
running the setup script as:

7

https://github.com/marcelotduarte/cx_Freeze/tree/master/cx_Freeze/samples

cx_Freeze Documentation, Release 6.4

python setup.py bdist_msi

On Mac OS X, you can use bdist_dmg to build a Mac disk image.

3.1 distutils commands

cx_Freeze creates four new commands and subclasses four others in order to provide the ability to both build and
install executables. In typical distutils fashion they can be provided in the setup script, on the command line or in a
setup.cfg configuration file. They are described in further detail below.

To specify options in the script, use underscores in the name. For example:

setup(...
options = {'build_exe': {'init_script':'Console'}})

To specify the same options on the command line, use dashes, like this:

python setup.py build_exe --init-script Console

Some options also have a short form to use on the command line. These are given in brackets below.

3.1.1 build

This command is a standard command which has been modified by cx_Freeze to build any executables that are defined.
The following options were added to the standard set of options for the command:

option name description
build_exe (-b) directory for built executables and dependent files, defaults to a directory of the form

build/exe.[platform identifier].[python version]

3.1.2 build_exe

This command performs the work of building an executable or set of executables. It can be further customized:

8 Chapter 3. distutils setup script

cx_Freeze Documentation, Release 6.4

option name description
build_exe (-b) directory for built executables and dependent files, defaults to the value of the

“build_exe” option on the build command (see above); note that using this option
(instead of the corresponding option on the build command) may break bdist_msi,
bdist_mac, and other commands

optimize (-o) optimization level, one of 0 (disabled), 1 or 2
excludes (-e) comma separated list of names of modules to exclude
includes (-e) comma separated list of names of modules to include
packages (-p) comma separated list of packages to include, which includes all submodules in the

package
replace_paths Modify filenames attached to code objects, which appear in tracebacks. Pass a comma

separated list of paths in the form <search>=<replace>. The value * in the search
portion will match the directory containing the entire package, leaving just the relative
path to the module.

path comma separated list of paths to search; the default value is sys.path
no_compress create a zipfile with no compression
constants comma separated list of constant values to include in the constants module called

BUILD_CONSTANTS in the form <name>=<value>
include_files list containing files to be copied to the target directory; it is expected that this list will

contain strings or 2-tuples for the source and destination; the source can be a file or a
directory (in which case the tree is copied except for .svn and CVS directories); the
target must not be an absolute path

include_msvcr include the Microsoft Visual C runtime DLLs without needing the redistributable
package installed

zip_includes list containing files to be included in the zip file directory; it is expected that this list
will contain strings or 2-tuples for the source and destination

bin_includes list of names of files to include when determining dependencies of binary files that
would normally be excluded; note that version numbers that normally follow the
shared object extension are stripped prior to performing the comparison

bin_excludes list of names of files to exclude when determining dependencies of binary files that
would normally be included; note that version numbers that normally follow the
shared object extension are stripped prior to performing the comparison

bin_path_includes list of paths from which to include files when determining dependencies of binary
files

bin_path_excludes list of paths from which to exclude files when determining dependencies of binary
files

zip_include_packages list of packages which should be included in the zip file; the default is for all packages
to be placed in the file system, not the zip file; those packages which are known to
work well inside a zip file can be included if desired; use * to specify that all packages
should be included in the zip file

zip_exclude_packages list of packages which should be excluded from the zip file and placed in the file
system instead; the default is for all packages to be placed in the file system since a
number of packages assume that is where they are found and will fail when placed in
a zip file; use * to specify that all packages should be placed in the file system and
excluded from the zip file (the default)

silent (-s) suppress all output except warnings

3.1.3 install

This command is a standard command which has been modified by cx_Freeze to install any executables that are
defined. The following options were added to the standard set of options for the command:

3.1. distutils commands 9

cx_Freeze Documentation, Release 6.4

option name description
install_exe directory for installed executables and dependent files

3.1.4 install_exe

This command performs the work installing an executable or set of executables. It can be used directly but most often
is used when building Windows installers or RPM packages. It can be further customized:

option name description
install_dir (-d) directory to install executables to; this defaults to a subdirectory called <name>-

<version> in the “Program Files” directory on Windows and <prefix>/lib on other
platforms; on platforms other than Windows symbolic links are also created in <pre-
fix>/bin for each executable.

build_dir (-b) build directory (where to install from); this defaults to the build_dir from the build
command

force (-f) force installation, overwriting existing files
skip_build skip the build steps

3.1.5 bdist_msi

This command is a standard command in Python 2.5 and higher which has been modified by cx_Freeze to handle
installing executables and their dependencies. The following options were added to the standard set of options for the
command:

option_name description
add_to_path add the target directory to the PATH environment variable; the default value is True if

there are any console based executables and False otherwise
all_users perform installation for all users; the default value is False and results in an installation

for just the installing user
data dictionary of arbitrary MSI data indexed by table name; for each table, a list of tuples

should be provided, representing the rows that should be added to the table
summary_data dictionary of data to include in MSI summary information stream (allowable keys are

“author”, “comments”, “keywords”)
directories list of directories that should be created during installation
environment_variables list of environment variables that should be added to the system during installation
initial_target_dir defines the initial target directory supplied to the user during installation
install_icon path of icon to use for the add/remove programs window that pops up during installa-

tion
product_code define the product code for the package that is created
target_name specifies the name of the file that is to be created
upgrade_code define the GUID of the upgrade code for the package that is created; this is used to

force removal of any packages created with the same upgrade code prior to the in-
stallation of this one; the valid format for a GUID is {XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX} where X is a hex digit. Refer to Windows GUID.

For example:

'bdist_msi': {
'upgrade_code': "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}",

(continues on next page)

10 Chapter 3. distutils setup script

https://docs.microsoft.com/en-us/windows/win32/api/guiddef/ns-guiddef-guid

cx_Freeze Documentation, Release 6.4

(continued from previous page)

'add_to_path': True,
'environment_variables': [

("E_MYAPP_VAR", "=-*MYAPP_VAR", "1", "TARGETDIR")
]

}

3.1.6 bdist_rpm

This command is a standard command which has been modified by cx_Freeze to ensure that packages are created
with the proper architecture for the platform. The standard command assumes that the package should be architecture
independent if it cannot find any extension modules.

3.1.7 bdist_mac

This command is available on Mac OS X systems, to create a Mac application bundle (a .app directory).

option_name description
iconfile Path to an icns icon file for the application. This will be copied into the bundle.
qt_menu_nib Path to the qt-menu.nib file for Qt applications. By default, it will be auto-detected.
bundle_name File name for the bundle application without the .app extension.
custom_info_plist File to be used as the Info.plist in the app bundle. A basic one will be generated by

default.
include_frameworks A list of Framework directories to include in the app bundle.
include_resources A list of tuples of additional files to include in the app bundle’s resources directory,

with the first element being the source, and second the destination file or directory
name.

codesign_identity The identity of the key to be used to sign the app bundle.
codesign_entitlements The path to an entitlements file to use for your application’s code signature.
codesign_deep Boolean for whether to codesign using the –deep option.
codesign_resource_rules Plist file to be passed to codesign’s –resource-rules option.
absolute_reference_path Path to use for all referenced libraries instead of @executable_path
rpath_lib_folder replace @rpath with given folder for any files

New in version 4.3.

Changed in version 4.3.2: Added the iconfile and bundle_name options.

Changed in version 4.3.3: Added the include_frameworks, custom_info_plist, codesign_identity
and codesign_entitlements options.

Changed in version 4.3.4: Added the codesign_deep and codesign_resource_rules options.

Changed in version 6.0: Added the environment_variables, include_resources,
absolute_reference_path and rpath_lib_folder options. Replaced the compressed option
with the no_compress option.

3.1.8 bdist_dmg

This command is available on Mac OS X systems; it creates an application bundle, then packages it into a DMG disk
image suitable for distribution and installation.

3.1. distutils commands 11

cx_Freeze Documentation, Release 6.4

option_name description
volume_label Volume label of the DMG disk image
applications_shortcut Boolean for whether to include shortcut to Applications in the DMG disk image

New in version 4.3.

Changed in version 4.3.2: Added the applications_shortcut option.

3.2 cx_Freeze.Executable

The options for the build_exe command are the defaults for any executables that are created. The options for the
Executable class allow specification of the values specific to a particular executable. The arguments to the constructor
are as follows:

argument name description
script the name of the file containing the script which is to be frozen
initScript the name of the initialization script that will be executed before the actual script is

executed; this script is used to set up the environment for the executable; if a name is
given without an absolute path the names of files in the initscripts subdirectory of the
cx_Freeze package is searched

base the name of the base executable; if a name is given without an absolute path the names
of files in the bases subdirectory of the cx_Freeze package is searched

targetName the name of the target executable; the default value is the name of the script with the
extension exchanged with the extension for the base executable; if specified without
extension, one will be added (Windows only).

icon name of icon which should be included in the executable itself on Windows or placed
in the target directory for other platforms

shortcutName the name to give a shortcut for the executable when included in an MSI package
(Windows only).

shortcutDir the directory in which to place the shortcut when being installed by an MSI package;
see the MSI Shortcut table documentation for more information on what values can
be placed here (Windows only).

copyright the copyright value to include in the version resource associated with executable
(Windows only).

trademarks the trademarks value to include in the version resource associated with the executable
(Windows only).

12 Chapter 3. distutils setup script

CHAPTER 4

cxfreeze script

The cxfreeze script is included with other Python scripts. On Windows and the Mac this is in the Scripts
subdirectory of your Python installation whereas on Unix platforms this in the bin directory of the prefix where Python
is installed.

Assuming you have a script called hello.py which you want to turn into an executable, this can be accomplished
by this command:

cxfreeze -c hello.py --target-dir dist

Further customization can be done using the following options:

--version
show version number and exit

-h, --help
show this help message and exit

-O
optimize generated bytecode as per PYTHONOPTIMIZE; use -OO in order to remove doc strings

-c, --compress
compress byte code in zip files

-s, --silent
suppress all output except warnings and errors

--base-name=NAME
file on which to base the target file; if the name of the file is not an absolute file name, the subdirectory bases
(rooted in the directory in which the freezer is found) will be searched for a file matching the name

--init-script=NAME
script which will be executed upon startup; if the name of the file is not an absolute file name, the subdirectory
initscripts (rooted in the directory in which the cx_Freeze package is found) will be searched for a file matching
the name

--target-dir=DIR, --install-dir=DIR
The directory in which to place the target file and any dependent files

13

cx_Freeze Documentation, Release 6.4

--target-name=NAME
the name of the file to create instead of the base name of the script and the extension of the base binary

--default-path=DIRS
list of paths separated by the standard path separator for the platform which will be used to initialize sys.path
prior to running the module finder

--include-path=DIRS
list of paths separated by the standard path separator for the platform which will be used to modify sys.path
prior to running the module finder

--replace-paths=DIRECTIVES
replace all the paths in modules found in the given paths with the given replacement string; multiple values are
separated by the standard path separator and each value is of the form path=replacement_string; path can be *
which means all paths not already specified

--includes=NAMES --include-modules=NAMES
comma separated list of modules to include

--excludes=NAMES --exclude-modules=NAMES
comma separated list of modules to exclude

--packages=NAMES
comma separated list of packages to include, which includes all submodules in the package

--include-files=FILES
comma separated list of paths to include

-z SPEC, --zip-include=SPEC
name of file to add to the zip file or a specification of the form name=arcname which will specify the archive
name to use; multiple –zip-include arguments can be used

--zip-include-packages=NAMES
comma separated list of packages which should be included in the zip file; the default is for all packages to be
placed in the file system, not the zip file; those packages which are known to work well inside a zip file can be
included if desired; use * to specify that all packages should be included in the zip file

--zip-exclude-packages=NAMES
comma separated list of packages which should be excluded from the zip file and placed in the file system
instead; the default is for all packages to be placed in the file system since a number of pa ckages assume that is
where they are found and will fail when placed in a zip file; use * to specify that all packages should be placed
in the file system and excluded from the zip file (the default)

--icon=ICON
name of the icon file for the application

14 Chapter 4. cxfreeze script

CHAPTER 5

Frequently Asked Questions

5.1 Problems with running frozen programs

A common problem is that cx_Freeze hasn’t automatically detected that a file needs to be copied. Modules that your
code imports are detected, but if they’re dynamically loaded - e.g. by a plugin system - you have to tell cx_Freeze
about them. This is easy using a setup script:

• For Python code, specify the module names in the includes or packages options.

• List compiled libraries (.dll or .so files) in the include_files option.

• Data files are a bit more complex - see Using data files.

5.1.1 Windows command prompt appears briefly

If there’s a problem with your frozen application, you may see a command prompt window appear briefly when you
try to run it, and then disappear again. This happens when a console-mode executable exits quickly, usually if there’s
an error as soon as it starts.

There are two ways to debug what’s going on:

1. Freeze your application with the Win32GUI base (see distutils setup script or cxfreeze script). This doesn’t use
a console window, and reports errors in a dialog box.

2. Alternatively, start a command prompt yourself and launch the frozen executable from the command line. This
will let you see any error messages in the console.

5.2 Freezing for other platforms

cx_Freeze works on Windows, Mac and Linux, but on each platform it only makes an executable that runs on that
platform. So if you want to freeze your program for Windows, freeze it on Windows; if you want to run it on Macs,
freeze it on a Mac.

15

cx_Freeze Documentation, Release 6.4

At a pinch, you can try to make a Windows executable using Wine. Our experience is that you need to copy some files
in manually after cx_Freeze has run to make the executable work. We don’t recommend this option.

5.3 Using data files

Applications often need data files besides the code, such as icons. Using a setup script, you can list data files or
directories in the include_files option to build_exe. They’ll be copied to the build directory alongside the
executable. Then to find them, use code like this:

def find_data_file(filename):
if getattr(sys, "frozen", False):

The application is frozen
datadir = os.path.dirname(sys.executable)

else:
The application is not frozen
Change this bit to match where you store your data files:
datadir = os.path.dirname(__file__)

return os.path.join(datadir, filename)

An alternative is to embed data in code, for example by using Qt’s resource system.

5.4 Microsoft Visual C++ Redistributable Package

Python 3.5-3.8 on Windows requires the Visual C++ Redistributable for Visual Studio 2015 or 2017 (the redistributa-
bles are shared), and because of how this is installed, cx_Freeze doesn’t automatically copy it for your application.
It’s also not clear whether everyone has the right to redistribute the DLLs. You’re responsible for checking the license
conditions associated with the DLLs you have installed.

• If your license allows you to distribute these files, specify the include_msvcr option to build_exe to have
them distributed automatically.

• If not, your users or your installer will need to install the Microsoft Visual C++ Redistributable Package (a free
download from Microsoft). It’s not uncommon for this to already be present on modern computers, but it’s not,
as far as we know, part of a standard Windows installation.

Download:

– for x86 (32 bit) Windows

– for x64 (64 bit) Windows

5.5 Single-file executables

cx_Freeze does not support building a single file exe, where all of the libraries for your application are embedded in
one executable file.

You can use IExpress to compress the build directory from cx_Freeze into a self-extracting archive: an exe which
unpacks your application into a temporary directory and runs it. IExpress is a utility that’s included with Windows,
intended for making installers, but it works equally well if you tell it to run the cx_Freeze-built exe after extraction.

Alternatively, you can create a self extracting archive using 7zip. This is a bit more complex than using IExpress, but
might provide more flexibility, and allows you to build your application using only open source tools.

16 Chapter 5. Frequently Asked Questions

https://www.winehq.org/
https://doc.qt.io/qt-5/resources.html
https://aka.ms/vs/16/release/vc_redist.x86.exe
https://aka.ms/vs/16/release/vc_redist.x64.exe
https://en.wikipedia.org/wiki/IExpress
https://7zip.bugaco.com/7zip/MANUAL/switches/sfx.htm

CHAPTER 6

Release notes

6.1 6.x releases

6.1.1 Version 6.4 (November 2020)

1) Improvements:

• Improved the resolution of dependencies in darwin MachO files (PR #590)

• Documentation (PR #783, PR #796‘)

• Release using GitHub Actions CI/CD workflows (PR #797)

• Modernize code (Type annotation, PEP8, pyupgrade, black, refactor, cleanup) (PR #785, PR #776,
PR #314, PR #787, PR #784, PR #786, PR #788, PR #789, PR #793, PR #794, PR #780, PR #795,
PR #799, PR #800, PR #801, PR #790, PR #798)

2) New or improved hooks for:

• PyQt5 (PR #718, PR #791)

3) Samples:

• Added a sample to illustrate problem with importlib.util.find_spec (PR #735)

• Sample for bdist_msi, summary_data option (PR #775)

• README for some samples; remove requirements.txt to avoid to be interpreted by some sites as the
requirements of cx_Freeze (PR #802)

4) Bugfixes:

• Cause MSI file to be released at the end of bdist_msi command. (PR #781)

6.1.2 Version 6.3 (October 2020)

1) Improvements:

17

https://github.com/marcelotduarte/cx_Freeze/pull/590
https://github.com/marcelotduarte/cx_Freeze/pull/783
https://github.com/marcelotduarte/cx_Freeze/pull/796{}`
https://github.com/marcelotduarte/cx_Freeze/pull/797
https://github.com/marcelotduarte/cx_Freeze/pull/785
https://github.com/marcelotduarte/cx_Freeze/pull/776
https://github.com/marcelotduarte/cx_Freeze/pull/314
https://github.com/marcelotduarte/cx_Freeze/pull/787
https://github.com/marcelotduarte/cx_Freeze/pull/784
https://github.com/marcelotduarte/cx_Freeze/pull/786
https://github.com/marcelotduarte/cx_Freeze/pull/788
https://github.com/marcelotduarte/cx_Freeze/pull/789
https://github.com/marcelotduarte/cx_Freeze/pull/793
https://github.com/marcelotduarte/cx_Freeze/pull/794
https://github.com/marcelotduarte/cx_Freeze/pull/780
https://github.com/marcelotduarte/cx_Freeze/pull/795
https://github.com/marcelotduarte/cx_Freeze/pull/799
https://github.com/marcelotduarte/cx_Freeze/pull/800
https://github.com/marcelotduarte/cx_Freeze/pull/801
https://github.com/marcelotduarte/cx_Freeze/pull/790
https://github.com/marcelotduarte/cx_Freeze/pull/798
https://github.com/marcelotduarte/cx_Freeze/pull/718
https://github.com/marcelotduarte/cx_Freeze/pull/791
https://github.com/marcelotduarte/cx_Freeze/pull/735
https://github.com/marcelotduarte/cx_Freeze/pull/775
https://github.com/marcelotduarte/cx_Freeze/pull/802
https://github.com/marcelotduarte/cx_Freeze/pull/781

cx_Freeze Documentation, Release 6.4

• Improve metadata using importlib.metadata (PR #697)

• New options in cxfreeze script; documentation updated (PR #742)

• The command line parser was rewritten and modernised using argparse (PR #741)

• Documentation (PR #740, PR #722, PR #720)

• Cleanups (PR #766, PR #746, PR #744, PR #743, PR #736, PR #726, PR #724, PR #721, PR #712)

2) New or improved hooks for:

• google.cloud.storage (PR #708)

• google.crc32c (PR #737)

• matplotlib and numpy (PR #695, Issue #692)

• scipy (PR #725)

• sysconfig (PR #727, PR #715)

• tensorflow (PR #710)

3) Linux:

• Improve copy dependent files relative to source module file (linux) (PR #704)

4) Windows:

• Check if upgrade-code is valid and document the valid format (PR #711, Issue #585)

• Improve Windows GUID documentation (PR #749)

• Added option to bdist_msi to specify information for msi summary information stream (PR #760)

5) macOS:

• Fix the syspath for some version of python on macOS (PR #719, Issue #667)

6) Samples:

• Add pyside2 sample (PR #664)

• A sample for testing PyQt5 included in zip package (PR #717)

• Add pandas sample (PR #709)

• Added sample code to show the use of ConstantsModule / BUILD_CONSTANTS (PR #729)

7) Bugfixes:

• Ensure the copy of default python libraries in all platforms (PR #706, Issue #701)

• Remove warning ‘Distutils was imported before Setuptools’ (PR #694, Issue #693)

• Fix the use of compress and desambiguate the use of stat (PR #738)

• Small fix to handle a build constant that includes a “=” symbol. (PR #728)

• Fix issue when module.file is None (PR #707)

• Fix detect namespaces in py35 (PR #700)

• Set python initialization flags prior to Py_SetPath call to avoid warnings (PR #751)

18 Chapter 6. Release notes

https://github.com/marcelotduarte/cx_Freeze/pull/697
https://github.com/marcelotduarte/cx_Freeze/pull/742
https://github.com/marcelotduarte/cx_Freeze/pull/741
https://github.com/marcelotduarte/cx_Freeze/pull/740
https://github.com/marcelotduarte/cx_Freeze/pull/722
https://github.com/marcelotduarte/cx_Freeze/pull/720
https://github.com/marcelotduarte/cx_Freeze/pull/766
https://github.com/marcelotduarte/cx_Freeze/pull/746
https://github.com/marcelotduarte/cx_Freeze/pull/744
https://github.com/marcelotduarte/cx_Freeze/pull/743
https://github.com/marcelotduarte/cx_Freeze/pull/736
https://github.com/marcelotduarte/cx_Freeze/pull/726
https://github.com/marcelotduarte/cx_Freeze/pull/724
https://github.com/marcelotduarte/cx_Freeze/pull/721
https://github.com/marcelotduarte/cx_Freeze/pull/712
https://github.com/marcelotduarte/cx_Freeze/pull/708
https://github.com/marcelotduarte/cx_Freeze/pull/737
https://github.com/marcelotduarte/cx_Freeze/pull/695
https://github.com/marcelotduarte/cx_Freeze/issues/692
https://github.com/marcelotduarte/cx_Freeze/pull/725
https://github.com/marcelotduarte/cx_Freeze/pull/727
https://github.com/marcelotduarte/cx_Freeze/pull/715
https://github.com/marcelotduarte/cx_Freeze/pull/710
https://github.com/marcelotduarte/cx_Freeze/pull/704
https://github.com/marcelotduarte/cx_Freeze/pull/711
https://github.com/marcelotduarte/cx_Freeze/issues/585
https://github.com/marcelotduarte/cx_Freeze/pull/749
https://github.com/marcelotduarte/cx_Freeze/pull/760
https://github.com/marcelotduarte/cx_Freeze/pull/719
https://github.com/marcelotduarte/cx_Freeze/issues/667
https://github.com/marcelotduarte/cx_Freeze/pull/664
https://github.com/marcelotduarte/cx_Freeze/pull/717
https://github.com/marcelotduarte/cx_Freeze/pull/709
https://github.com/marcelotduarte/cx_Freeze/pull/729
https://github.com/marcelotduarte/cx_Freeze/pull/706
https://github.com/marcelotduarte/cx_Freeze/issues/701
https://github.com/marcelotduarte/cx_Freeze/pull/694
https://github.com/marcelotduarte/cx_Freeze/issues/693
https://github.com/marcelotduarte/cx_Freeze/pull/738
https://github.com/marcelotduarte/cx_Freeze/pull/728
https://github.com/marcelotduarte/cx_Freeze/pull/707
https://github.com/marcelotduarte/cx_Freeze/pull/700
https://github.com/marcelotduarte/cx_Freeze/pull/751

cx_Freeze Documentation, Release 6.4

6.1.3 Version 6.2 (July 2020)

1) New or improved hooks for:

• aiofiles (PR #600)

• babel (PR #577)

• bcrypt (PR #583, Issue #581)

• certifi (PR #690)

• cffi.cparser (PR #603)

• ctypes (for MSYS2 mingw) (PR #565)

• matplotlib (PR #574, Issue #569)

• pikepdf (PR #604)

• lxml (PR #604)

• pycryptodome (PR #602)

• pygments (PR #604)

• pkg_resources (PR #584, Issue #579)

• pytest (PR #617)

• setuptools (PR #608)

• uvloop (PR #689)

2) Linux:

• Pass command line arguments in current locale (PR #645, Issue #611)

3) Windows:

• Fixed multiprocessing pickling errors (PR #622, Issue #539, Issue #402, Issue #403, Issue #231, Issue
#536)

• Ensure the copy of default python libraries (PR #640)

• Replace deprecated functions that will be removed in py4 - win32gui (PR #649)

• Exclude Tkinter from loaded modules (PR #576, Issue #567)

• Fixed “no module named ‘scipy.spatial.cKDTree’” (PR #626, Issue #233)

• Fixed “no module named ‘multiprocessing.pool’” (PR #627, Issue #353)

• Download cx_Logging to build Win32Service.exe when building from sources (PR #650, Issue #519)

4) macOS:

• Fixing modification of PATH for single user install (PR #614, Issue #613)

• Make needed dirs when using include_resources (PR #633)

• Check for Mach-O using byte strings to allow case of non unicode chars (PR #635)

• Copy references from /usr/local (PR #648)

5) Documentation

• Update doc and faq (PR #564, PR #663, PR #688)

• Initial work to be pep8 compliant (PR #572, PR #582)

6.1. 6.x releases 19

https://github.com/marcelotduarte/cx_Freeze/pull/600
https://github.com/marcelotduarte/cx_Freeze/pull/577
https://github.com/marcelotduarte/cx_Freeze/pull/583
https://github.com/marcelotduarte/cx_Freeze/issues/581
https://github.com/marcelotduarte/cx_Freeze/pull/690
https://github.com/marcelotduarte/cx_Freeze/pull/603
https://github.com/marcelotduarte/cx_Freeze/pull/565
https://github.com/marcelotduarte/cx_Freeze/pull/574
https://github.com/marcelotduarte/cx_Freeze/issues/569
https://github.com/marcelotduarte/cx_Freeze/pull/604
https://github.com/marcelotduarte/cx_Freeze/pull/604
https://github.com/marcelotduarte/cx_Freeze/pull/602
https://github.com/marcelotduarte/cx_Freeze/pull/604
https://github.com/marcelotduarte/cx_Freeze/pull/584
https://github.com/marcelotduarte/cx_Freeze/issues/579
https://github.com/marcelotduarte/cx_Freeze/pull/617
https://github.com/marcelotduarte/cx_Freeze/pull/608
https://github.com/marcelotduarte/cx_Freeze/pull/689
https://github.com/marcelotduarte/cx_Freeze/pull/645
https://github.com/marcelotduarte/cx_Freeze/issues/611
https://github.com/marcelotduarte/cx_Freeze/pull/622
https://github.com/marcelotduarte/cx_Freeze/issues/539
https://github.com/marcelotduarte/cx_Freeze/issues/402
https://github.com/marcelotduarte/cx_Freeze/issues/403
https://github.com/marcelotduarte/cx_Freeze/issues/231
https://github.com/marcelotduarte/cx_Freeze/issues/536
https://github.com/marcelotduarte/cx_Freeze/issues/536
https://github.com/marcelotduarte/cx_Freeze/pull/640
https://github.com/marcelotduarte/cx_Freeze/pull/649
https://github.com/marcelotduarte/cx_Freeze/pull/576
https://github.com/marcelotduarte/cx_Freeze/issues/567
https://github.com/marcelotduarte/cx_Freeze/pull/626
https://github.com/marcelotduarte/cx_Freeze/issues/233
https://github.com/marcelotduarte/cx_Freeze/pull/627
https://github.com/marcelotduarte/cx_Freeze/issues/353
https://github.com/marcelotduarte/cx_Freeze/pull/650
https://github.com/marcelotduarte/cx_Freeze/issues/519
https://github.com/marcelotduarte/cx_Freeze/pull/614
https://github.com/marcelotduarte/cx_Freeze/issues/613
https://github.com/marcelotduarte/cx_Freeze/pull/633
https://github.com/marcelotduarte/cx_Freeze/pull/635
https://github.com/marcelotduarte/cx_Freeze/pull/648
https://github.com/marcelotduarte/cx_Freeze/pull/564
https://github.com/marcelotduarte/cx_Freeze/pull/663
https://github.com/marcelotduarte/cx_Freeze/pull/688
https://github.com/marcelotduarte/cx_Freeze/pull/572
https://github.com/marcelotduarte/cx_Freeze/pull/582

cx_Freeze Documentation, Release 6.4

6) Misc

• Fixed bug in cxfreeze script introduced in 6.1 (Issue #560).

• Remove old packages/modules names, do not report as missing (PR #605)

• Better support for MSYS2 and Anaconda3 (PR #642)

• Support python 3.5.2 and up (PR #606)

• Support metadata to use by pkg_resources (PR #608)

• New commom function rebuild_code_object to be reusable (PR #629)

• Fix optimize option in python 3.8 (PR #641)

• Add –include-files option to cxfreeze script (PR #647)

• Replace the value of __package__ directly in the code (PR #651)

• Eliminate exclusion of dbm module since it is in Python 3 (PR #662, Issue #660)

• Detect namespace packages (PR #669, PR #668)

• Installing from source requires setuptools (PR #687)

• Remove PyUnicode_FromUnicode (PR #673)

6.1.4 Version 6.1 (January 2020)

1) Added support for Python 3.8 (PR #545, PR #556).

2) Added support for python setup.py develop (PR #502).

3) Use console_scripts in entry_points so that the commands cxfreeze and
cxfreeze-quickstart run on Windows without the need for running a postinstall script (PR #511).

4) Added support for switching from per-user to per-machine installations on Windows (PR #507).

5) Fix installation if AlwaysInstallElevated policy is set on Windows (PR #533).

6) Updated default dependencies for Python 3 on Windows (PR #505).

7) Removed unused code (PR #549).

8) The default dependencies are now always copied into the lib folder instead of into the directory where the
executable resides on Linux (PR #518).

9) Dependent files are now copied to the same relative directory as their location in the source on Linux (PR #494).

10) Added tests for commonly used packages like cryptography, pillow, sqlite, pytz, ctypes and
distutils (PR #508, PR #537, PR #546, PR #555, PR #557).

11) Fix regression with DLL dependencies introduced in 6.0 by PR #492 due to case differences (PR #512).

12) Fix regression with dependent files introduced in 6.0 by PR #297 for platforms other than macOS (PR #516).

13) The version of cx_Freeze is now defined in one place (PR #552).

14) Eliminate exclusion of gestalt module on platforms other than macOS since it exists outside of macOS.

15) Improved hooks for sqlite3 (PR #509), cryptography, and tkinter (PR #559).

16) Added hook for pytz (PR #554).

17) Improved hook infrastructure, permitting hooks to add constants that can be examined at runtime, determine
whether a module is going to be stored in the file system and include files in the zip file.

20 Chapter 6. Release notes

https://github.com/marcelotduarte/cx_Freeze/issues/560
https://github.com/marcelotduarte/cx_Freeze/pull/605
https://github.com/marcelotduarte/cx_Freeze/pull/642
https://github.com/marcelotduarte/cx_Freeze/pull/606
https://github.com/marcelotduarte/cx_Freeze/pull/608
https://github.com/marcelotduarte/cx_Freeze/pull/629
https://github.com/marcelotduarte/cx_Freeze/pull/641
https://github.com/marcelotduarte/cx_Freeze/pull/647
https://github.com/marcelotduarte/cx_Freeze/pull/651
https://github.com/marcelotduarte/cx_Freeze/pull/662
https://github.com/marcelotduarte/cx_Freeze/issues/660
https://github.com/marcelotduarte/cx_Freeze/pull/669
https://github.com/marcelotduarte/cx_Freeze/pull/668
https://github.com/marcelotduarte/cx_Freeze/pull/687
https://github.com/marcelotduarte/cx_Freeze/pull/673
https://github.com/marcelotduarte/cx_Freeze/pull/545
https://github.com/marcelotduarte/cx_Freeze/pull/556
https://github.com/marcelotduarte/cx_Freeze/pull/502
https://github.com/marcelotduarte/cx_Freeze/pull/511
https://github.com/marcelotduarte/cx_Freeze/pull/507
https://github.com/marcelotduarte/cx_Freeze/pull/533
https://github.com/marcelotduarte/cx_Freeze/pull/505
https://github.com/marcelotduarte/cx_Freeze/pull/549
https://github.com/marcelotduarte/cx_Freeze/pull/518
https://github.com/marcelotduarte/cx_Freeze/pull/494
https://github.com/marcelotduarte/cx_Freeze/pull/508
https://github.com/marcelotduarte/cx_Freeze/pull/537
https://github.com/marcelotduarte/cx_Freeze/pull/546
https://github.com/marcelotduarte/cx_Freeze/pull/555
https://github.com/marcelotduarte/cx_Freeze/pull/557
https://github.com/marcelotduarte/cx_Freeze/pull/492
https://github.com/marcelotduarte/cx_Freeze/pull/512
https://github.com/marcelotduarte/cx_Freeze/pull/297
https://github.com/marcelotduarte/cx_Freeze/pull/516
https://github.com/marcelotduarte/cx_Freeze/pull/552
https://github.com/marcelotduarte/cx_Freeze/pull/509
https://github.com/marcelotduarte/cx_Freeze/pull/559
https://github.com/marcelotduarte/cx_Freeze/pull/554

cx_Freeze Documentation, Release 6.4

18) Improved documentation (PR #510).

6.1.5 Version 6.0 (August 2019)

1) Corrected support for Python 3.7 (PR #395).

2) Use importlib and other Python 3 improvements (PR #484, PR #485, PR #486, PR #490).

3) Fixed issue with @rpath causing file copy errors on macOS (PR #307).

4) Replaced file() with open() and use context manager to ensure the file handle is closed and deleted (PR #348).

5) Corrected invalid version handling in bdist_msi (PR #349, Issue #340).

6) Corrected hook for clr module (PR #397, PR #444).

7) Corrected documentation for compress option (PR #358).

8) Ensure that the pythoncom and pywintypes DLLs are found in the lib directory and not in the base directory
(Issue #332).

9) Always copy dependent files to root directory on macOS (PR #365).

10) Skip self referencing archive on macOS (PR #364, Issue #304).

11) Include doc directory in source distribution (PR #394, Issue #376).

12) Force msilib module to be reloaded in order to allow for the generation of multiple MSI packages in a single
session (PR #419).

13) Added hook for PyQt5.QtPrintSupport module (PR #401).

14) Added ability to include an icon on the add/remove program window that pops up during installation (PR #387).

15) Prevent spurious errors from being printed during building on macOS by checking to see that a file is a Mach-O
binary before adding it to the list of files it is checking the reference of (PR #342, Issue #268).

16) Avoid otool bug on macOS Yosemite (PR #297, Issue #292).

17) Added ability to specify environment variables that should be created when an MSI package is installed (PR
#266).

18) Added support for including resources in an app bundle for macOS (PR #423).

19) Added absolute reference path option for macOS packages (PR #424).

20) Added CFBundle identifier for macOS packages (PR #427, Issue #426).

21) Added hook for copying SSL DLLs for Python 3.7+ on Windows (PR #470).

22) Added -municode flag when building on Windows with mingw32 (PR #468).

23) Added hook for pycparser (PR #446).

24) Fixed hook for zmq so it doesn’t fail when there is no bundled libzmq library in the installed pyzmq package
(PR #442).

25) Print error when fetching dependent files fails (PR #435).

26) Make executable writable before adding the icon (PR #430, Issue #368).

27) Dropped support for RPM and MSI packages for cx_Freeze itself since these are no longer supported by PyPI.

28) Fix building console app with mingw32 (PR #475).

29) Force inclusion of the unicodedata module which is used by the socket module, and possibly others (PR #476).

30) Added hook for asyncio package (PR #477).

6.1. 6.x releases 21

https://github.com/marcelotduarte/cx_Freeze/pull/510
https://github.com/marcelotduarte/cx_Freeze/pull/395
https://github.com/marcelotduarte/cx_Freeze/pull/484
https://github.com/marcelotduarte/cx_Freeze/pull/485
https://github.com/marcelotduarte/cx_Freeze/pull/486
https://github.com/marcelotduarte/cx_Freeze/pull/490
https://github.com/marcelotduarte/cx_Freeze/pull/307
https://github.com/marcelotduarte/cx_Freeze/pull/348
https://github.com/marcelotduarte/cx_Freeze/pull/349
https://github.com/marcelotduarte/cx_Freeze/issues/340
https://github.com/marcelotduarte/cx_Freeze/pull/397
https://github.com/marcelotduarte/cx_Freeze/pull/444
https://github.com/marcelotduarte/cx_Freeze/pull/358
https://github.com/marcelotduarte/cx_Freeze/issues/332
https://github.com/marcelotduarte/cx_Freeze/pull/365
https://github.com/marcelotduarte/cx_Freeze/pull/364
https://github.com/marcelotduarte/cx_Freeze/issues/304
https://github.com/marcelotduarte/cx_Freeze/pull/394
https://github.com/marcelotduarte/cx_Freeze/issues/376
https://github.com/marcelotduarte/cx_Freeze/pull/419
https://github.com/marcelotduarte/cx_Freeze/pull/401
https://github.com/marcelotduarte/cx_Freeze/pull/387
https://github.com/marcelotduarte/cx_Freeze/pull/342
https://github.com/marcelotduarte/cx_Freeze/issues/268
https://github.com/marcelotduarte/cx_Freeze/pull/297
https://github.com/marcelotduarte/cx_Freeze/issues/292
https://github.com/marcelotduarte/cx_Freeze/pull/266
https://github.com/marcelotduarte/cx_Freeze/pull/266
https://github.com/marcelotduarte/cx_Freeze/pull/423
https://github.com/marcelotduarte/cx_Freeze/pull/424
https://github.com/marcelotduarte/cx_Freeze/pull/427
https://github.com/marcelotduarte/cx_Freeze/issues/426
https://github.com/marcelotduarte/cx_Freeze/pull/470
https://github.com/marcelotduarte/cx_Freeze/pull/468
https://github.com/marcelotduarte/cx_Freeze/pull/446
https://github.com/marcelotduarte/cx_Freeze/pull/442
https://github.com/marcelotduarte/cx_Freeze/pull/435
https://github.com/marcelotduarte/cx_Freeze/pull/430
https://github.com/marcelotduarte/cx_Freeze/issues/368
https://github.com/marcelotduarte/cx_Freeze/pull/475
https://github.com/marcelotduarte/cx_Freeze/pull/476
https://github.com/marcelotduarte/cx_Freeze/pull/477

cx_Freeze Documentation, Release 6.4

31) Added hook for idna package (PR #478).

32) Added hook for pkg_resources package (PR #481).

33) Added hook for gevent (PR #495).

34) Force .exe extension to be included on Windows, so that the same setup code can be used on both Linux and
Windows (PR #489).

35) Added hook for Pillow (PR #491).

36) Improved hook for tkinter (PR #493).

37) Avoid attempting to check for dependent files on Windows when the file is not an executable or DLL (PR #492).

38) Ensure that only executable files are checked for dependencies in order to avoid spurious errors when checking
for dependent files.

39) Improved hook for matplotlib.

6.1.6 Version 6.0b1 (November 2017)

1) Dropped support for Python 2.x. Use cx_Freeze 5 for Python 2.x support.

2) Instead of depending on the built-in functionality of searching for a zip file that looks like pythonxx.zip (which
is disabled on some platforms like Ubuntu), set the Python path to include a subdirectory called “lib” and a zip
file “lib/library.zip” on all platforms.

3) Do not create version resource when version is omitted (PR #279).

4) Ensure the sqlite3 DLL is loaded in the same directory as the module which depends on it (Issue #296).

6.2 5.x releases

6.2.1 Version 5.1.1 (December 2017)

1) Correct code used to identify the directory in which the library and its zip file are located (Issue #324, Issue
#325).

2) Ensure that the pythoncom and pywintypes DLLs are found in the lib directory, not in the base directory (Issue
#332).

3) Copy dependent files to the same directory as the file it depends on, not the root directory; also add a sample for
PyQt5 to demonstrate its correct use (Issue #328).

6.2.2 Version 5.1 (November 2017)

1) Use fixed library location on all platforms; should correct the error “no module named __startup__” (PR #286).

2) Correct sqlite3 hook for use in Python 2.7 (PR #272).

3) Correct usage of scipy.lib (PR #281).

4) Correct handling of __path__ attribute in module (PR #295).

5) Fix gevent bug #42 (PR #301).

6) Droppped support for Python 3.4.

22 Chapter 6. Release notes

https://github.com/marcelotduarte/cx_Freeze/pull/478
https://github.com/marcelotduarte/cx_Freeze/pull/481
https://github.com/marcelotduarte/cx_Freeze/pull/495
https://github.com/marcelotduarte/cx_Freeze/pull/489
https://github.com/marcelotduarte/cx_Freeze/pull/491
https://github.com/marcelotduarte/cx_Freeze/pull/493
https://github.com/marcelotduarte/cx_Freeze/pull/492
https://github.com/marcelotduarte/cx_Freeze/pull/279
https://github.com/marcelotduarte/cx_Freeze/issues/296
https://github.com/marcelotduarte/cx_Freeze/issues/324
https://github.com/marcelotduarte/cx_Freeze/issues/325
https://github.com/marcelotduarte/cx_Freeze/issues/325
https://github.com/marcelotduarte/cx_Freeze/issues/332
https://github.com/marcelotduarte/cx_Freeze/issues/332
https://github.com/marcelotduarte/cx_Freeze/issues/328
https://github.com/marcelotduarte/cx_Freeze/pull/286
https://github.com/marcelotduarte/cx_Freeze/pull/272
https://github.com/marcelotduarte/cx_Freeze/pull/281
https://github.com/marcelotduarte/cx_Freeze/pull/295
https://github.com/marcelotduarte/cx_Freeze/pull/301

cx_Freeze Documentation, Release 6.4

6.2.3 Version 5.0.2 (May 2017)

1) Correct handling of import in child thread (PR #245)

2) Correct handling of “dis” module with Python 3.5.1 (Issue #225)

3) Correct handling of “multiprocess.process” module (Issue #230)

4) Correct attempt to assign variable to an empty list (PR #260)

5) Improved README (PR #235, PR #236)

6) Add hook for pythonnet package (PR #251)

7) Add hook for sqlite3 and improve win32file hook (PR #261)

8) Add FAQ entry (PR #267)

6.2.4 Version 5.0.1 (January 2017)

1) Added support for Python 3.6.

2) Corrected hooks for the pythoncom and pywintypes modules.

3) Use realpath() to get the absolute path of the executable; this resolves symbolic links and ensures that changing
the path before all imports are complete does not result in the executable being unable to find modules.

4) Correct issue with usage of ‘if __main__ == “__main__”’. (Issue #211)

5) Correct handling of the zip_include_packages option. (Issue #208)

6) Correct logic regarding importing of submodules. (Issue #219)

6.2.5 Version 5.0 (November 2016)

Note: This version supports Python 2.7 and above.

1) Added support for Python 3.5.

2) Switched from using C compiled frozen modules which embed part of the standard library to using the default
named zip file and library file locations. This eliminates the need to recompile cx_Freeze for each new Python
version as no parts of the standard library are included in the installation now. This also implies that appending
a zip file to the executable is no longer supported since the standard name and location are used.

3) Removed unnecessary options and parameters from cx_Freeze. (PR #60, PR #67)

4) Added support for Win32Service base with Python 3.x. (PR #49)

5) Add __version__ as an alias to version. (PR #65)

6) Updated hooks for PyQt, h5py. (PR #68, PR #64, PR #70)

7) Set copyDependentFiles = True for include files. (PR #66)

8) Reallow including modules with non-identifier names. (PR #79)

9) Fix missing space in Windows installer. (PR #81)

10) Use pattern “not in string” isntead of “string.find(pattern)” (PR #76)

11) Fix –add-to-path writing to the per-user instead of system environment (PR #86)

6.2. 5.x releases 23

https://github.com/marcelotduarte/cx_Freeze/pull/245
https://github.com/marcelotduarte/cx_Freeze/issues/225
https://github.com/marcelotduarte/cx_Freeze/issues/230
https://github.com/marcelotduarte/cx_Freeze/pull/260
https://github.com/marcelotduarte/cx_Freeze/pull/235
https://github.com/marcelotduarte/cx_Freeze/pull/236
https://github.com/marcelotduarte/cx_Freeze/pull/251
https://github.com/marcelotduarte/cx_Freeze/pull/261
https://github.com/marcelotduarte/cx_Freeze/pull/267
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/211
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/208
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/219
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/60
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/67
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/49
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/65
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/68
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/64
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/70
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/66
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/79
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/81
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/76
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/86

cx_Freeze Documentation, Release 6.4

12) Fix documentation (PR #77, PR #78)

13) Do not import excluded submodules. (PR #89)

14) Correct distribution files for bdist_msi (PR #95)

15) Allow proper handling of Unicode command line parameters under Windows (PR #87)

16) Add pyzmq hook (PR #63)

17) Add copyright and trademarks to version information (PR #94)

18) Fix compilation on Ubuntu (Issue #32)

19) Set defaults in class directly, rather than as defaults in the function signature. (Issue #185)

20) Correct relative import of builtin module (cx_Freeze was incorrectly considering it an extension found within a
package). (Issue #127)

21) Ensure that included files are added relative to the executable, not to the location of the zip file. (Issue #183)

22) Prevent infinite loop while using cx_Freeze installed in a prefix. (Issue #204)

23) Added support for storing packages in the file system instead of in the zip file. There are a number of packages
that assume that they are found in the file system and if found in a zip file instead produce strange errors. The
default is now to store packages in the file system but a method is available to place packages in the zip file if
they are known to behave properly when placed there. (Issue #73)

24) Added support for untranslatable characters on Windows in the path where a frozen executable is located. (Issue
#29)

25) Use volume label to name the DMG file (Issue #97)

26) Significantly simplified startup code.

27) Added logging statements for improved debugging.

28) Updated samples to handle recent updates to packages.

29) Avoid infinite loop for deferred imports which are cycles of one another.

6.2.6 Version 4.3.4 (December 2014)

Note: This version supports Python 2.6 and above.

1) Rebuilt for Python 3.4.2. Dropped support for Python versions less than 2.6.

2) Correct stale comment. (PR #50)

3) Fix processing path specs from config when targets are not explicit. (PR #53)

4) Tweaks to improve compiling with MSVC 10 (2010) on Windows. (PR #54)

5) Added support for using the –deep and –resource-rules options when code signing through cx_Freeze on OS X.
(PR #55)

6) Catch error if GetDependentFiles() is called on a non-library (PR #56)

7) Added FAQ entry on single file executables (PR #58)

8) Only look one level deep for implicit relative imports (PR #59)

9) Removed statement that was filtering out the ntpath module. (PR #74)

24 Chapter 6. Release notes

https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/77
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/78
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/89
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/95
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/87
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/63
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/94
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/32
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/185
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/127
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/183
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/204
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/73
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/29
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/29
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/97
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/50
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/53
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/54
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/55
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/56
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/58
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/59
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/74

cx_Freeze Documentation, Release 6.4

6.2.7 Version 4.3.3 (May 2014)

Note: This version supports Python 2.4 and above.

1) Added support for release version of 3.4 (PR #47, PR #48)

2) Added support for code signing in bdist_mac (PR #40)

3) Added custom Info.plist and Framework suport to bdist_mac (PR #33)

4) Added support for resolving dependencies on OS X where paths are relative (PR #35)

5) Added hook for QtWebKit module (PR #36)

6) Added support for finding packages inside zip files (PR #38)

7) Ensure that syntax errors in code do not prevent freezing from taking place but simply ignore those modules
(PR #44, PR #45)

8) Init scripts now use code that works in both Python 2 and 3 (PR #42)

9) Simplify service sample (PR #41)

10) Fix documentation for bdist_dmg (PR #34)

11) All options that accept multiple values are split on commas as documented (PR #39)

12) Truncated names in Python tracebacks (Issue #52)

13) install_name_tool doesn’t set relative paths for files added using include_files option (Issue #31)

6.2.8 Version 4.3.2 (October 2013)

1) Added support for Python 3.4.

2) Added hooks for PyQt4, PyQt5 and PySide to handle their plugins.

3) Added support for creating a shortcut/alias to the Applications directory within distributed DMG files for OS X.

4) Improve missing modules output.

5) Avoid polluting the extension module namespace when using the bootstrap module to load the extension.

6) Added support for using setuptools and pip if such tools are available.

7) Added first tests; nose and mock are required to run them.

8) Remove –bundle-iconfile in favor of –iconfile as a more generic method of including the icon for bdist_mac.

9) Documentation improved and FAQ added.

10) Converted samples to follow PEP 8.

11) cxfreeze-quickstart failed if the default base was not used

12) scripts frozen with Python 3 fail with an ImportError trying to import the re module

13) fix bug where after a first attempt to find a module failed, the second attempt would erroneously succeed

14) stop attempting to load a module by a name that is not a valid Python identifier

6.2. 5.x releases 25

https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/47
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/48
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/40
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/33
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/35
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/36
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/38
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/44
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/45
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/42
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/41
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/34
https://bitbucket.org/anthony_tuininga/cx_freeze/pull-request/39
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/52
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/31

cx_Freeze Documentation, Release 6.4

6.2.9 Version 4.3.1 (November 2012)

Note: This version supports Python 2.4 and above. If you need Python 2.3 support, please use cx_Freeze 4.2.3.

1) Added support for the final release of Python 3.3.

2) Added support for copying the MSVC runtime DLLs and manifest if desired by using the –include-msvcr switch.
Thanks to Almar Klein for the initial patch.

3) Clarified the documentation on the –replace-paths option. Thanks to Thomas Kluyver for the patch.

4) Producing a Mac distribution failed with a variable reference.

5) Freezing a script using PyQt on a Mac failed with a type error.

6) Version number reported was incorrect. (Issue #7)

7) Correct paths during installation on Windows. (Issue #11)

6.2.10 Version 4.3 (July 2012)

Note: This version supports Python 2.4 and above. If you need Python 2.3 support, please use cx_Freeze 4.2.3.

1) Added options to build Mac OS X application bundles and DMG packages using bdist_mac and bdist_dmg
distutils commands. Written by Rob Reilink.

2) The documentation is now using Sphinx, and is available on ReadTheDocs.org.

3) Added support for Python 3.3 which uses a different compiled file format than earlier versions of Python.

4) Added support for Windows services which start automatically and which are capable of monitoring changes in
sessions such as lock and unlock.

5) New cxfreeze-quickstartwizard to create a basic setup.py file. Initially written by Thomas Kluyver.

6) Included files under their original name can now be passed to include_files as a tuple with an empty
second element. Written by r_haritonov.

7) File inclusions/exclusions can now be specified using a full path, or a shared library name with a version number
suffix.

8) Messagebox display of certain errors in Windows GUI applications with Python 3.

9) Running Windows GUI applications in a path containing non-ASCII characters.

10) Calculate the correct filename for the Python shared library in Python 3.2.

11) Including a package would not include the packages within that package, only the modules within that package.
(Issue #3)

6.2.11 Version 4.2.3 (March 2011)

1) Added support for Python 3.2.

2) Added hook for datetime module which implicitly imports the time module.

3) Fixed hook for tkinter in Python 3.x.

26 Chapter 6. Release notes

https://bitbucket.org/anthony_tuininga/cx_freeze/issues/7
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/11
https://cx_freeze.readthedocs.org/en/latest/index.html
https://bitbucket.org/anthony_tuininga/cx_freeze/issues/3

cx_Freeze Documentation, Release 6.4

4) Always include the zlib module since the zipimport module requires it, even when compression is not taking
place.

5) Added sample for a tkinter application.

6.2.12 Version 4.2.2 (December 2010)

1) Added support for namespace packages which are loaded implicitly upon startup by injection into sys.modules.

2) Added support for a Zope sample which makes use of namespace packages.

3) Use the Microsoft compiler on Windows for Python 2.6 and up as some strange behaviors were identified with
Python 2.7 when compiled using mingw32.

4) Eliminate warning about -mwindows when using the Microsoft compiler for building the Win32GUI base exe-
cutable.

5) Added support for creating version resources on Windows.

6) Ensure that modules that are not truly required for bootstrapping are not included in the frozen modules compiled
in to the executable; otherwise, some packages and modules (such as the logging package) cannot be found at
runtime. This problem only seems to be present in Python 2.7.1 but it is a good improvement for earlier releases
of Python as well.

7) Added support for setting the description for Windows services.

8) Added hook for using the widget plugins which are part of the PyQt4.uic package.

9) Added additional hooks to remove spurious errors about missing modules and to force inclusion of implicitly
imported modules (twitter module and additional submodules of the PyQt4 package).

10) Fixed support for installing frozen executables under Python 3.x on Windows.

11) Removed optional import of setuptools which is not a complete drop-in replacement for distutils and if found,
replaces distutils with itself, resulting in some distutils features not being available; for those who require or
prefer the use of setuptools, import it in your setup.py.

6.2.13 Version 4.2.1 (October 2010)

1) Added support for specifying bin_path_includes and bin_path_excludes in setup scripts.

2) Added support for compiling Windows services with the Microsoft compiler and building for 64-bit Windows.

3) When installing Windows services, use the full path for both the executable and the configuration file if specified.

4) Eliminate duplicate files for each possible version of Python when building MSI packages for Python 2.7.

5) Fix declaration of namespace packages.

6) Fix check for cx_Logging import library directory.

7) Added hooks for the python-Xlib package.

8) Added hooks to ignore the _scproxy module when not on the Mac platform and the win32gui and pyHook
modules on platforms other than Windows.

9) When copying files, copy the stat() information as well as was done in earlier versions of cx_Freeze.

10) Added documentation for the shortcutName and shortcutDir parameters for creating an executable.

6.2. 5.x releases 27

cx_Freeze Documentation, Release 6.4

6.2.14 Version 4.2 (July 2010)

1) Added support for Python 2.7.

2) Improved support for Python 3.x.

3) Improved support for Mac OS X based on feedback from some Mac users.

4) Improved hooks for the following modules: postgresql, matplotlib, twisted, zope, PyQt4.

5) Improved packaging of MSI files by enabling support for creating shortcuts for the executables, for specifying
the initial target directory and for adding other arbitrary configuration to the MSI.

6) Added support for namespace packages such as those distributed for zope.

7) The name of the generated MSI packages now includes the architecture in order to differentiate between 32-bit
and 64-bit builds.

8) Removed use of LINKFORSHARED on the Mac which is not necessary and for Python 2.6 at least causes an
error to be raised.

9) Turn off filename globbing on Windows as requested by Craig McQueen.

10) Fixed bug that prevented hooks from successfully including files in the build (as is done for the matplotlib
sample).

11) Fixed bug that prevented submodules from being included in the build if the format of the import statement was
from . import <name>.

12) Reverted bug fix for threading shutdown support which has been fixed differently and is no longer required in
Python 2.6.5 and up (in fact an error is raised if the threading module is used in a frozen executable and this
code is retained).

13) Fixed bug which resulted in attempts to compile .pyc and .pyo files from the initscripts directory.

14) Fixed selection of “Program Files” directory on Windows in 64-bit MSI packages built by cx_Freeze.

6.2.15 Version 4.1.2 (January 2010)

1) Fix bug that caused the util extension to be named improperly.

2) Fix bug that prevented freezing from taking place if a packaged submodule was missing.

3) Fix bug that prevented freezing from taking place in Python 3.x if the encoding of the source file wasn’t com-
patible with the encoding of the terminal performing the freeze.

4) Fix bug that caused the base modules to be included in the library.zip as well as the base executables.

6.2.16 Version 4.1.1 (December 2009)

1) Added support for Python 3.1.

2) Added support for 64-bit Windows.

3) Ensured that setlocale() is called prior to manipulating file names so that names that are not encoded in ASCII
can still be used.

4) Fixed bug that caused the Python shared library to be ignored and the static library to be required or a symbolic
link to the shared library created manually.

5) Added support for renaming attributes upon import and other less frequently used idioms in order to avoid as
much as possible spurious errors about modules not being found.

28 Chapter 6. Release notes

cx_Freeze Documentation, Release 6.4

6) Force inclusion of the traceback module in order to ensure that errors are reported in a reasonable fashion.

7) Improved support for the execution of ldd on the Solaris platform as suggested by Eric Brunel.

8) Added sample for the PyQt4 package and improved hooks for that package.

9) Enhanced hooks further in order to perform hidden imports and avoid errors about missing modules for several
additional commonly used packages and modules.

10) Readded support for the zip include option.

11) Avoid the error about digest mismatch when installing RPMs by modifying the spec files built with cx_Freeze.

12) Ensure that manifest.txt is included in the source distribution.

6.2.17 Version 4.1 (July 2009)

1) Added support for Python 3.x.

2) Added support for services on Windows.

3) Added command line option –silent (-s) as requested by Todd Templeton. This option turns off all normal output
including the report of the modules that are included.

4) Added command line option –icon as requested by Tom Brown.

5) Ensure that Py_Finalize() is called even when exceptions take place so that any finalization (such as __del__
calls) are made prior to the executable terminating.

6) Ensured that empty directories are created as needed in the target as requested by Clemens Hermann.

7) The encodings package and any other modules required to bootstrap the Python runtime are now automatically
included in the frozen executable.

8) Ensured that if a target name is specified, that the module name in the zip file is also changed. Thanks to
Clemens Hermann for the initial patch.

9) Enabled support for compiling on 64-bit Windows.

10) If an import error occurs during the load phase, treat that as a bad module as well. Thanks to Tony Meyer for
pointing this out.

11) As suggested by Todd Templeton, ensured that the include files list is copied, not simply referenced so that
further uses of the list do not inadvertently cause side effects.

12) As suggested by Todd Templeton, zip files are now closed properly in order to avoid potential corruption.

13) As suggested by Todd Templeton, data files are no longer copied when the copy dependent files flag is cleared.

14) Enabled better support of setup.py scripts that call other setup.py scripts such as the ones used by cx_OracleTools
and cx_OracleDBATools.

15) On Solaris, ldd outputs tabs instead of spaces so expand them first before looking for the separator. Thanks to
Eric Brunel for reporting this and providing the solution.

16) On Windows, exclude the Windows directory and the side-by-side installation directory when determining DLLs
to copy since these are generally considered part of the system.

17) On Windows, use %* rather than the separated arguments in the generated batch file in order to avoid problems
with the very limited argument processor used by the command processor.

18) For the Win32GUI base executable, add support for specifying the caption to use when displaying error mes-
sages.

6.2. 5.x releases 29

cx_Freeze Documentation, Release 6.4

19) For the Win32GUI base executable, add support for calling the excepthook for top level exceptions if one has
been specified.

20) On Windows, ensure that the MSI packages that are built are per-machine by default as otherwise strange things
can happen.

21) Fixed bug in the calling of readlink() that would occasionally result in strange behavior or segmentation faults.

22) Duplicate warnings about libraries not found by ldd are now suppressed.

23) Tweaked hooks for a number of modules based on feedback from others or personal experience.

6.2.18 Version 4.0.1 (October 2008)

1) Added support for Python 2.6. On Windows a manifest file is now required because of the switch to using the
new Microsoft C runtime.

2) Ensure that hooks are run for builtin modules.

6.2.19 Version 4.0 (September 2008)

1) Added support for copying files to the target directory.

2) Added support for a hook that runs when a module is missing.

3) Added support for binary path includes as well as excludes; use sequences rather than dictionaries as a more
convenient API; exclude the standard locations for 32-bit and 64-bit libaries in multi-architecture systems.

4) Added support for searching zip files (egg files) for modules.

5) Added support for handling system exit exceptions similarly to what Python does itself as requested by Sylvain.

6) Added code to wait for threads to shut down like the normal Python interpreter does. Thanks to Mariano Disanzo
for discovering this discrepancy.

7) Hooks added or modified based on feedback from many people.

8) Don’t include the version name in the display name of the MSI.

9) Use the OS dependent path normalization routines rather than simply use the lowercase value as on Unix case
is important; thanks to Artie Eoff for pointing this out.

10) Include a version attribute in the cx_Freeze package and display it in the output for the –version option to the
script.

11) Include build instructions as requested by Norbert Sebok.

12) Add support for copying files when modules are included which require data files to operate properly; add
support for copying the necessary files for the Tkinter and matplotlib modules.

13) Handle deferred imports recursively as needed; ensure that from lists do not automatically indicate that they are
part of the module or the deferred import processing doesn’t actually work!

14) Handle the situation where a module imports everything from a package and the __all__ variable has been
defined but the package has not actually imported everything in the __all__ variable during initialization.

15) Modified license text to more closely match the Python Software Foundation license as was intended.

16) Added sample script for freezing an application using matplotlib.

17) Renamed freeze to cxfreeze to avoid conflict with another package that uses that executable as requested by
Siegfried Gevatter.

30 Chapter 6. Release notes

cx_Freeze Documentation, Release 6.4

6.2.20 Version 4.0b1 (September 2007)

1) Added support for placing modules in library.zip or in a separate zip file for each executable that is produced.

2) Added support for copying binary dependent files (DLLs and shared libraries)

3) Added support for including all submodules in a package

4) Added support for including icons in Windows executables

5) Added support for constants module which can be used for determining certain build constants at runtime

6) Added support for relative imports available in Python 2.5 and up

7) Added support for building Windows installers (Python 2.5 and up) and RPM packages

8) Added support for distutils configuration scripts

9) Added support for hooks which can force inclusion or exclusion of modules when certain modules are included

10) Added documentation and samples

11) Added setup.py for building the cx_Freeze package instead of a script used to build only the frozen bases

12) FreezePython renamed to a script called freeze in the Python distribution

13) On Linux and other platforms that support it set LD_RUN_PATH to include the directory in which the executable
is located

6.3 Older versions

6.3.1 Version 3.0.3 (July 2006)

1) In Common.c, used MAXPATHLEN defined in the Python OS independent include file rather than the
PATH_MAX define which is OS dependent and is not available on IRIX as noted by Andrew Jones.

2) In the initscript ConsoleSetLibPath.py, added lines from initscript Console.py that should have been there since
the only difference between that script and this one is the automatic re-execution of the executable.

3) Added an explicit “import encodings” to the initscripts in order to handle Unicode encodings a little better.
Thanks to Ralf Schmitt for pointing out the problem and its solution.

4) Generated a meaningful name for the extension loader script so that it is clear which particular extension module
is being loaded when an exception is being raised.

5) In MakeFrozenBases.py, use distutils to figure out a few more platform-dependent linker flags as suggested by
Ralf Schmitt.

6.3.2 Version 3.0.2 (December 2005)

1) Add support for compressing the byte code in the zip files that are produced.

2) Add better support for the win32com package as requested by Barry Scott.

3) Prevent deletion of target file if it happens to be identical to the source file.

4) Include additional flags for local modifications to a Python build as suggested by Benjamin Rutt.

5) Expanded instructions for building cx_Freeze from source based on a suggestion from Gregg Lind.

6) Fix typo in help string.

6.3. Older versions 31

cx_Freeze Documentation, Release 6.4

6.3.3 Version 3.0.1 (December 2004)

1) Added option –default-path which is used to specify the path used when finding modules. This is particularly
useful when performing cross compilations (such as for building a frozen executable for Windows CE).

2) Added option –shared-lib-name which can be used to specify the name of the shared library (DLL) implementing
the Python runtime that is required for the frozen executable to work. This option is also particularly useful when
cross compiling since the normal method for determining this information cannot be used.

3) Added option –zip-include which allows for additional files to be added to the zip file that contains the modules
that implement the Python script. Thanks to Barray Warsaw for providing the initial patch.

4) Added support for handling read-only files properly. Thanks to Peter Grayson for pointing out the problem and
providing a solution.

5) Added support for a frozen executable to be a symbolic link. Thanks to Robert Kiendl for providing the initial
patch.

6) Enhanced the support for running a frozen executable that uses an existing Python installation to locate modules
it requires. This is primarily of use for embedding Python where the interface is C but the ability to run from
source is still desired.

7) Modified the documentation to indicate that building from source on Windows currently requires the mingw
compiler (https://www.mingw.org).

8) Workaround the problem in Python 2.3 (fixed in Python 2.4) which causes a broken module to be left in
sys.modules if an ImportError takes place during the execution of the code in that module. Thanks to Roger
Binns for pointing this out.

6.3.4 Version 3.0 (September 2004)

1) Ensure that ldd is only run on extension modules.

2) Allow for using a compiler other than gcc for building the frozen base executables by setting the environment
variable CC.

3) Ensure that the import lock is not held while executing the main script; otherwise, attempts to import a module
within a thread will hang that thread as noted by Roger Binns.

4) Added support for replacing the paths in all frozen modules with something else (so that for example the path
of the machine on which the freezing was done is not displayed in tracebacks)

6.3.5 Version 3.0 beta3 (September 2004)

1) Explicitly include the warnings module so that at runtime warnings are suppressed as when running Python
normally.

2) Improve the extension loader so that an ImportError is raised when the dynamic module is not located; otherwise
an error about missing attributes is raised instead.

3) Extension loaders are only created when copying dependencies since the normal module should be loadable in
the situation where a Python installation is available.

4) Added support for Python 2.4.

5) Fixed the dependency checking for wxPython to be a little more intelligent.

32 Chapter 6. Release notes

https://www.mingw.org

cx_Freeze Documentation, Release 6.4

6.3.6 Version 3.0 beta2 (July 2004)

1) Fix issues with locating the initscripts and bases relative to the directory in which the executable was started.

2) Added new base executable ConsoleKeepPath which is used when an existing Python installation is required
(such as for FreezePython itself).

3) Forced the existence of a Python installation to be ignored when using the standard Console base executable.

4) Remove the existing file when copying dependent files; otherwise, an error is raised when attempting to over-
write read-only files.

5) Added option -O (or -OO) to FreezePython to set the optimization used when generating bytecode.

6.3.7 Version 3.0 beta1 (June 2004)

1) cx_Freeze now requires Python 2.3 or higher since it takes advantage of the ability of Python 2.3 and higher
to import modules from zip files. This makes the freezing process considerably simpler and also allows for
the execution of multiple frozen packages (such as found in COM servers or shared libraries) without requiring
modification to the Python modules.

2) All external dependencies have been removed. cx_Freeze now only requires a standard Python distribution to
do its work.

3) Added the ability to define the initialization scripts that cx_Freeze uses on startup of the frozen program. Previ-
ously, these scripts were written in C and could not easily be changed; now they are written in Python and can
be found in the initscripts directory (and chosen with the new –init-script option to FreezePython).

4) The base executable ConsoleSetLibPath has been removed and replaced with the initscript ConsoleSetLibPath.

5) Removed base executables for Win32 services and Win32 COM servers. This functionality will be restored in
the future but it is not currently in a state that is ready for release. If this functionality is required, please use
py2exe or contact me for my work in progress.

6) The attribute sys.frozen is now set so that more recent pywin32 modules work as expected when frozen.

7) Added option –include-path to FreezePython to allow overriding of sys.path without modifying the environment
variable PYTHONPATH.

8) Added option –target-dir/–install-dir to specify the directory in which the frozen executable and its dependencies
will be placed.

9) Removed the option –shared-lib since it was used for building shared libraries and can be managed with the
initscript SharedLib.py.

10) MakeFrozenBases.py now checks the platform specific include directory as requested by Michael Partridge.

6.3.8 Version 2.2 (August 2003)

1) Add option (–ext-list-file) to FreezePython to write the list of extensions copied to the installation directory to a
file. This option is useful in cases where multiple builds are performed into the same installation directory.

2) Pass the arguments on the command line through to Win32 GUI applications. Thanks to Michael Porter for
pointing this out.

3) Link directly against the python DLL when building the frozen bases on Windows, thus eliminating the need for
building an import library.

4) Force sys.path to include the directory in which the script to be frozen is found.

5) Make sure that the installation directory exists before attempting to copy the target binary into it.

6.3. Older versions 33

cx_Freeze Documentation, Release 6.4

6) The Win32GUI base has been modified to display fatal errors in message boxes, rather than printing errors to
stderr, since on Windows the standard file IO handles are all closed.

6.3.9 Version 2.1 (July 2003)

1) Remove dependency on Python 2.2. Thanks to Paul Moore for not only pointing it out but providing patches.

2) Set up the list of frozen modules in advance, rather than doing it after Python is initialized so that implicit
imports done by Python can be satisfied. The bug in Python 2.3 that demonstrated this issue has been fixed in
the first release candidate. Thanks to Thomas Heller for pointing out the obvious in this instance!

3) Added additional base executable (ConsoleSetLibPath) to support setting the LD_LIBRARY_PATH variable
on Unix platforms and restarting the executable to put the new setting into effect. This is primarily of use in
distributing wxPython applications on Unix where the shared library has an embedded RPATH value which can
cause problems.

4) Small improvements of documentation based on feedback from several people.

5) Print information about the files written or copied during the freezing process.

6) Do not copy extensions when freezing if the path is being overridden since it is expected that a full Python
installation is available to the target users of the frozen binary.

7) Provide meaningful error message when the wxPython library cannot be found during the freezing process.

6.3.10 Version 2.0

1) Added support for in process (DLL) COM servers using PythonCOM.

2) Ensured that the frozen flag is set prior to determining the full path for the program in order to avoid warnings
about Python not being found on some platforms.

3) Added include file and resource file to the source tree to avoid the dependency on the Wine message compiler
for Win32 builds.

4) Dropped the option –copy-extensions; this now happens automatically since the resulting binary is useless
without them.

5) Added a sample for building a Win32 service.

6) Make use of improved modules from Python 2.3 (which function under 2.2)

6.3.11 Version 1.1

1) Fixed import error with C extensions in packages; thanks to Thomas Heller for pointing out the solution to this
problem.

2) Added options to FreezePython to allow for the inclusion of modules which will not be found by the module
finder (–include-modules) and the exclusion of modules which will be found by the module finder but should
not be included (–exclude-modules).

3) Fixed typo in README.txt.

34 Chapter 6. Release notes

CHAPTER 7

Development

7.1 Getting started

cx_Freeze is a volunteer maintained open source project and we welcome contributions of all forms. The sections
below will help you get started with development, testing, and documentation. We’re pleased that you are interested
in working on cx_Freeze. This document is meant to get you setup to work on cx_Freeze and to act as a guide and
reference to the development setup. If you face any issues during this process, please open an issue about it on the
issue tracker.

7.2 Setup

The source code can be found on Github.

You can use git to clone the repository:

git clone https://github.com/marcelotduarte/cx_Freeze
cd cx_Freeze

7.2.1 Building documentation

cx_Freeze’s documentation is built using Sphinx. The documentation is written in reStructuredText. To build it locally,
run:

make -C doc

The built documentation can be found in the doc/build/html folder and may be viewed by opening index.
html within that folder.

firefox doc/build/html/index.html

35

https://github.com/marcelotduarte/cx_Freeze
https://pypi.org/project/Sphinx

cx_Freeze Documentation, Release 6.4

7.3 Contributing

7.3.1 Submitting pull requests

Submit pull requests against the master branch, providing a good description of what you’re doing and why. You
must have legal permission to distribute any code you contribute to cx_Freeze and it must be available under the PSF
License. Any pull request must consider and work on the supported platforms.

Pull Requests should be small to facilitate review. Keep them self-contained, and limited in scope. Studies have
shown that review quality falls off as patch size grows. Sometimes this will result in many small PRs to land a
single large feature. In particular, pull requests must not be treated as “feature branches”, with ongoing development
work happening within the PR. Instead, the feature should be broken up into smaller, independent parts which can be
reviewed and merged individually.

Additionally, avoid including “cosmetic” changes to code that is unrelated to your change, as these make reviewing
the PR more difficult. Examples include re-flowing text in comments or documentation, or addition or removal of
blank lines or whitespace within lines. Such changes can be made separately, as a “formatting cleanup” PR, if needed.

Contents:

The project’s code layout

• cx_Freeze/ (Python files)

– freezer.py - The core class for freezing code.

– finder.py - Discovers what modules are required by the code

– hooks.py - A collection of functions which are triggered automatically by finder.py when certain
packages are included or not found.

– dist.py - The classes and functions with which cx_Freeze extends distutils.

– windist.py - Extends distutils to build Windows installer packages.

– main.py - The code behind the cxfreeze script.

• source/ (C files)

– util.c - Compiled functions for cx_Freeze itself. Compiles to cx_Freeze.util. Functions are used
only on Windows.

– bases/ - The source of the base executables which are used to launch your Python applications. Different
bases serve for different types of application on Windows (GUI, console application or service). The base
executable calls the initscript, which in turn calls the user’s code.

• initscripts/ - Python scripts which set up the interpreter to run from frozen code, then load the code from
the zip file and set it running.

• samples/ - Examples of using cx_Freeze with a number of common modules.

• doc/ - The Sphinx documentation.

36 Chapter 7. Development

https://www.kessler.de/prd/smartbear/BestPracticesForPeerCodeReview.pdf
https://www.kessler.de/prd/smartbear/BestPracticesForPeerCodeReview.pdf

CHAPTER 8

Licensing

• Copyright © 2007-2020, Anthony Tuininga.

• Copyright © 2001-2006, Computronix (Canada) Ltd., Edmonton, Alberta, Canada.

• All rights reserved.

NOTE: this license is derived from the Python Software Foundation License which can be found at https://www.
python.org/psf/license

8.1 License for cx_Freeze

1. This LICENSE AGREEMENT is between the copyright holders and the Individual or Organization (“Licensee”)
accessing and otherwise using cx_Freeze software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, the copyright holders hereby grant Licensee
a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use cx_Freeze alone or in any derivative version, provided,
however, that this License Agreement and this notice of copyright are retained in cx_Freeze alone or in any
derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates cx_Freeze or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to cx_Freeze.

4. The copyright holders are making cx_Freeze available to Licensee on an “AS IS” basis. THE COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, THE COPYRIGHT HOLDERS MAKE NO AND DISCLAIM ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF CX_FREEZE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. THE COPYRIGHT HOLDERS SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF
CX_FREEZE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING CX_FREEZE, OR ANY DERIVA-
TIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

37

https://www.python.org/psf/license
https://www.python.org/psf/license

cx_Freeze Documentation, Release 6.4

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between the copyright holders and Licensee. This License Agreement does not grant permission to use
copyright holder’s trademarks or trade name in a trademark sense to endorse or promote products or services of
Licensee, or any third party.

8. By copying, installing or otherwise using cx_Freeze, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

Computronix® is a registered trademark of Computronix (Canada) Ltd.

38 Chapter 8. Licensing

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

39

cx_Freeze Documentation, Release 6.4

40 Chapter 9. Indices and tables

Index

Symbols
-base-name=NAME

command line option, 13
-default-path=DIRS

command line option, 14
-excludes=NAMES -exclude-modules=NAMES

command line option, 14
-icon=ICON

command line option, 14
-include-files=FILES

command line option, 14
-include-path=DIRS

command line option, 14
-includes=NAMES -include-modules=NAMES

command line option, 14
-init-script=NAME

command line option, 13
-packages=NAMES

command line option, 14
-replace-paths=DIRECTIVES

command line option, 14
-target-dir=DIR, -install-dir=DIR

command line option, 13
-target-name=NAME

command line option, 13
-version

command line option, 13
-zip-exclude-packages=NAMES

command line option, 14
-zip-include-packages=NAMES

command line option, 14
-O

command line option, 13
-c, -compress

command line option, 13
-h, -help

command line option, 13
-s, -silent

command line option, 13

-z SPEC, -zip-include=SPEC
command line option, 14

C
command line option

-base-name=NAME, 13
-default-path=DIRS, 14
-excludes=NAMES

-exclude-modules=NAMES, 14
-icon=ICON, 14
-include-files=FILES, 14
-include-path=DIRS, 14
-includes=NAMES

-include-modules=NAMES, 14
-init-script=NAME, 13
-packages=NAMES, 14
-replace-paths=DIRECTIVES, 14
-target-dir=DIR, -install-dir=DIR,

13
-target-name=NAME, 13
-version, 13
-zip-exclude-packages=NAMES, 14
-zip-include-packages=NAMES, 14
-O, 13
-c, -compress, 13
-h, -help, 13
-s, -silent, 13
-z SPEC, -zip-include=SPEC, 14

41

	Using cx_Freeze
	Installation
	Source code

	distutils setup script
	distutils commands
	cx_Freeze.Executable

	cxfreeze script
	Frequently Asked Questions
	Problems with running frozen programs
	Freezing for other platforms
	Using data files
	Microsoft Visual C++ Redistributable Package
	Single-file executables

	Release notes
	6.x releases
	5.x releases
	Older versions

	Development
	Getting started
	Setup
	Contributing

	Licensing
	License for cx_Freeze

	Indices and tables
	Index

